

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Foreword

To cite this Article (2006) 'Foreword', Separation Science and Technology, 41: 7, 1211

To link to this Article: DOI: 10.1080/01496390600710838

URL: <http://dx.doi.org/10.1080/01496390600710838>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Foreword

MEMBRANE FOULING: ORIGIN AND CONTROL STRATEGY

Membrane fouling is used to describe pore plugging and external pore blocking caused by deposition of particles and colloids on a membrane surface and precipitation of fine dissolved materials in membrane pores and on a membrane surface. Membrane fouling results in flux decline and increased pressure drop across the membrane, thereby limiting the development of membrane processes for water and wastewater treatments. Various types of physicochemical interactions cause membrane fouling. Physical, chemical and biological schemes are utilized to prevent fouling or regenerate fouled membranes. This theme issue reviewed state-of-art researches regarding how numerous process parameters impact fouling rates and, in particular, the possible contribution of microbial products to fouling.

As guest editor of this issue, I am especially indebted to all the authors for their kind contributions to cover a sufficiently wide range as that of interest to membrane researchers and practitioners. I am also grateful to the Editor, Steven M Cramer, for providing the valuable journal volume to highlight the achievements of membrane professionals embarking upon the coming membrane era.

D. J. Lee, Editor